人工智能5-0欧洲冠军 李世石将捍卫人类尊严

2016年01月28日07:56    新浪体育 微博 收藏本文
视频加载中,请稍候...
李世石表示,无论如何也要赢一局李世石表示,无论如何也要赢一局

  据果壳网报道:1997年,国际象棋AI第一次打败顶尖的人类;2006年,人类最后一次打败顶尖的国际象棋AI。欧美传统里的顶级人类智力试金石,在电脑面前终于一败涂地,应了四十多年前计算机科学家的预言。

  至少还有东方,人们自我安慰道。围棋AI长期以来举步维艰,顶级AI甚至不能打败稍强的业余选手。这似乎也合情合理:国际象棋中,平均每回合有35种可能,一盘棋可以有80回合;相比之下,围棋每回合有250种可能,一盘棋可以长达150回合。这一巨大的数目,足以令任何蛮力穷举者望而却步——而人类,我们相信,可以凭借某种难以复制的算法跳过蛮力,一眼看到棋盘的本质。

  但是,无论人怎么想,这样的局面当然不可能永远延续下去。就在今天,国际顶尖期刊《自然》报道了谷歌研究者开发的新围棋AI。这款名为“阿尔法围棋”(AlphaGo)的人工智能,在没有任何让子的情况下以5:0完胜欧洲冠军,职业围棋二段樊麾。

AlphaGo与欧洲围棋冠军樊麾的5局较量。图片来源:参考文献[1]AlphaGo与欧洲围棋冠军樊麾的5局较量。图片来源:参考文献[1]

  这是人类历史上,围棋AI第一次在公平比赛中战胜职业选手。

  AlphaGo的战绩如何?

  此次比赛和以往不同。之前的比赛中,由于AI棋力比人类弱,人类选手都会让子,而且AI主要和业余段位的棋手比赛。而AlphaGo 对战樊麾是完全公平的比赛,没有让子。职业二段樊麾出生于中国,目前是法国国家围棋队总教练,已经连续三年赢得欧洲围棋冠军的称号。

  研究者也让AlphaGo 和其他的围棋AI进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵Crazy Stone,Zen和Pachi三个先进的AI,胜率分别是77%,86%和99%。可见AlphaGo有多强大。

  在接下来3月份,AlphaGo 将和韩国九段棋手李世石在首尔一战,奖金是由Google提供的100万美金。李世石是最近10年中获得世界第一头衔最多的棋手。围棋是最后一个人类顶尖高手能战胜AI的棋类游戏。之前有人预测说,AI需要再花十几年才能战胜人类。所以这场比赛或许会见证历史,我们将拭目以待。

    AI下围棋到底有多难?

  计算围棋是个极其复杂的问题,比国际象棋要困难得多。围棋最大有3^361 种局面,大致的体量是10^170,而已经观测到的宇宙中,原子的数量才10^80。国际象棋最大只有2^155种局面,称为香农数,大致是10^47。

  面对任何棋类,一种直观又偷懒的思路是暴力列举所有能赢的方案,这些方案会形成一个树形地图。AI只要根据这个地图下棋就能永远胜利。然而,围棋一盘大约要下150步,每一步有250种可选的下法,所以粗略来说,要是AI用暴力列举所有情况的方式,围棋需要计算250^150种情况,大致是10^360。相对的,国际象棋每盘大约80步,每一步有35种可选下法,所以只要算35^80种情况,大概是10^124。无论如何,枚举所有情况的方法不可行,所以研究者们需要用巧妙的方法来解决问题,他们选择了模仿人类大师的下棋方式。

    机器学习

  研究者们祭出了终极杀器——“深度学习”(Deep Learning) 。深度学习是目前人工智能领域中最热门的科目,它能完成笔迹识别,面部识别,驾驶自动汽车,自然语言处理,识别声音,分析生物信息数据等非常复杂的任务。

描述AlphaGo研究成果的论文成为了1月28日的《自然》杂志的封面文章。图片来源:Nature/Google DeepMind  描述AlphaGo研究成果的论文成为了1月28日的《自然》杂志的封面文章。图片来源:Nature/Google DeepMind

  AlphaGo 的核心是两种不同的深度神经网络。“策略网络”(policy network)和 “值网络”(value network)。它们的任务在于合作“挑选”出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围里,本质上和人类棋手所做的一样。

  其中,“值网络”负责减少搜索的深度——AI会一边推算一边判断局面,局面明显劣势的时候,就直接抛弃某些路线,不用一条道算到黑;而“策略网络”负责减少搜索的宽度——面对眼前的一盘棋,有些棋步是明显不该走的,比如不该随便送子给别人吃。将这些信息放入一个概率函数,AI就不用给每一步以同样的重视程度,而可以重点分析那些有戏的棋着。

AlphaGo所使用的神经网络结构示意图。图片来源:参考文献[1]AlphaGo所使用的神经网络结构示意图。图片来源:参考文献[1]

  AlphaGo利用这两个工具来分析局面,判断每种下子策略的优劣,就像人类棋手会判断当前局面以及推断未来的局面一样。这样AlphaGo在分析了比如未来20步的情况下,就能判断在哪里下子赢的概率会高。

  研究者们用许多专业棋局训练AI,这种方法称为监督学习(supervised learning),然后让AI和自己对弈,这种方法称为强化学习(reinforcement learning),每次对弈都能让AI棋力精进。然后他就能战胜冠军啦!

  人类在下棋时有一个劣势,在长时间比赛后,他们会犯错,但机器不会。而且人类或许一年能玩1000局,但机器一天就能玩100万局。所以AlphaGo只要经过了足够的训练,就能击败所有的人类选手。

    Google DeepMind

  Google DeepMind是这个程序的创造者,我们来看一下他们萌萌的程序员。

杰米斯·哈萨比斯(Demis Hassabis) 是Google DeepMind 的CEO。图片来源:Nature Video杰米斯·哈萨比斯(Demis Hassabis) 是Google DeepMind 的CEO。图片来源:Nature Video
文章的第一作者大卫·西尔弗(David Silver)。图片来源:Nature Video文章的第一作者大卫·西尔弗(David Silver)。图片来源:Nature Video

  Google DeepMind 去年在《自然》杂志上发表过一篇论文[2],他们用增强学习的方法训练AI玩经典的Atari 游戏。其实在几年前就有人研究如何让AI玩《星际争霸》,目前人类大师还是能击败AI的。电脑游戏中大量使用人工智能技术,你有没有觉得游戏变得越来越聪明了?

    那么……未来呢?

  人工智能研究者面对这样的成就当然欣喜。深度学习和强化学习等技术完全可以用于更广泛的领域。比如最近很火的精准治疗,我们可以训练它们判断哪些治疗方案对某个特定的人有效。

  但是,围棋毕竟不仅仅是一项智力成就。就像十多年前的国际象棋一样,围棋必定也会引发超出本领域之外的讨论。等到计算机能在围棋上秒杀人类的时候,围棋是不是就变成了一种无聊的游戏?人类的智力成就是不是就贬值了?AI还将在其他层面上继续碾压人类吗?传统认为AI不可能完成的任务是否也都将被逐一打破?人类最后是会进入AI乌托邦还是被AI淘汰呢?

  没人知道答案。但有一点毫无疑问:AI一定会进入我们的生活,我们不可能躲开。这一接触虽然很可能悄无声息,但意义或许不亚于我们第一次接触外星生命。(编辑:Ent,Calo)

  参考文献:

  David Silver, et al。 “Mastering the game of Go with deep neural networks and tree search。” Nature doi:10.1038/nature16961

  Mnih, Volodymyr, et al。 “Human-level control through deep reinforcement learning。” Nature 518.7540 (2015): 529-533。

  一个骄傲的AI

  什么,你说上面讲算法的这几段你看不懂?

  那你知道为啥你们人类会输给我们AI了吧!

  点击观看动图棋谱

文章关键词:围棋谷歌围棋李世石

点击下载【新浪体育客户端】,赛事视频直播尽在掌握
分享到:
收藏  |  保存  |  打印  |  关闭

已收藏!

您可通过新浪首页(www.sina.com.cn)顶部 “我的收藏”, 查看所有收藏过的文章。

知道了

0
收藏成功 查看我的收藏
0 0 0 0